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Compositional and rheological Earth models
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Figure 2.39 Comparison of the compositional and rheological layering of the Earth. S u bte1 ra ne©
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Established modelling methods

Analogue modelling (plasticine,
sand

Di%ital modelling of geophysical
data

1D, 2D parametric layers with
limited anisofropy and 3D cell/
mesh based anisotropy. Stafistical
methods. Spherical harmonics
(Stokes coefficients)

Property discretization, L
assumptions, consfraints, minimising
measured and calculated error
misfit, and error fitting trade offs

Definition of *geology”

Analogue example Adda et al 2017
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Figure 4. Comparison of top overhead pictures with draped corresponding topography (colors) for model (a-c) AGRI-1, (d-f)
AGRI-3, and (g-i) AGRI-5, after step 2 of experimental phase 1 (a, d, g), after experimental phase 2 (b, e, h), and after experimental
phase 3 (c, f, i). The main formed structures have been highlighted, and the locations of cross sections shown in Figure 6 are
indicated with dashed lines.
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2D Profile and 3D modelling

Model refinement to reduce RMS error

3T e :
i AR AGG density model

(glcm"3)

Traditional profile modelling Regularized smooth cell 3D inversion
Extract from Long et al, 2011 Extract from Long et al, 2013
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Primary order structure - “tectonics”

Long wavelength structure can only be captured by
geophysical measurements over large distances (1000s kms),
and is dependent on coverage and sampling resolution

Satellite gravity and magnetics

Seismicity - Seismic ftomography
Other regional survey methods (2D profiles, e.g. SAMTEX)
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Station coverage

120'W 120°E 180°E

CRUST 5.1: A global crustal model at 5 x
5 degrees

Mooney et al, 1998

Areal coverage affects all seismic
tomography models, greatest issues
near surface (greater travel time

60°S coverage at core-mantle boundary)

i | . Less ambiguity at the core-mantle
oW > e e ooundary (S- waves do nof pass
through liquid outer core)

Figure 1. Location of seismic refraction profiles used in this study. Triangles correspond to locations within
continents and on margins where a velocity-depth function has been extracted from a published crustal
interpretation. These locations are generally at the midpoint between shot points along each profile. These
data provide details on the compressional wave seismic velocity structure and, in about 10% of the cases, also
the shear wave structure of the crust in a wide range of tectonic settings (Figure 2). Sources are cited by
Christensen and Mooney [1995]. Solid circles are locations of oceanic refraction profiles [Christensen, 1982]. A

standard crustal model is used for normal oceanic crust, and appropriate models are used for oceanic plateaus ©
and other feature (Figure 2 and text). Data selecton and iterpretation uncertaintes are discussed in the tex. upteirane
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Handling time - the fourth dimension

Availability of measured data

Satellites: updated altimetry for marine coverage (Cryosat-2, Jason-1, Jason-2, AltiKa), Grace
(2002-2017), GOCE 2009-2013

Bathymetry - large oceanic regions are still poorly surveyed

Processing consequences — understanding the construction of data sets

Geological consequences - refining geological mapping in areas of active deformation,
understanding structural change

Vintages of data versus resolution - temporal variations can only be observed if the data exists, at
sufficient resolution

4D Modelling - time lapse, based on constraints, assumptions, interpolation of repeatable survey
data.

The second way: qualitative interpretation
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Radiometric dating cmd hoi spot trails

Radiometric dating enables us to estimate the latest
onset of emplacement. Combined with plume trails,
clearly the Earth is moving fluidly, driven by deeper
stfructural controls.

: = Hawaii — Emperor: dates from
Tristan - dates from O’Connor et al, 2012 Torsvik et al , 2017
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Magnetics: NCImIbICI Bofswana border

Peak
O E

Trough
Residual magnetics

Magnetics, reduced to pole. Top left, Enhanced Magnetic Model (Chuillat et al, 2015), top

right, World Digital Magnetic Anomaly Map, (Quesnel et al, 2009) .
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Geology and gravity

0

Trough

Residual gravity

X Jan WAL ESHSEC] O : - =y

Top left , CGWM Geology (Milesi et al, 2010), top right, shallow crustal residual gravity derived from Sandwell
et al, 2014, purple faults, Permo-Triassic rifts (Macgregor, 2017), kimberlites (various sources)
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Gravity derived Moho
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Magne’roiellurlcs correlahons:
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Airborne magnetics

Acquired (2010) prior to the earthquake
(2017)

Reduced to pole airborne magnetics
Source: Geological Survey of Botswana
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Seismicity
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1999 Chi Chi (‘921’) earthquake

(TWO DECADES OF DESTRUCTIVE ACTIVITY)

Taiwan

Persistent strain in a region of convergent plates
Western aseismic zone

7.6 magnitude earthquake, 21/09/1999

Seismic focal mechanisms constrained by
- local geology
- mapped long wavelength structure
- underlying lithospheric structure
defined by seismic tomography,
satellite gravity and magnetics

-seismometers School ‘now converted

into 9_21!gnuseum
Intfroduction to Chi Chi using: e e

Sandwell et al, 2014 v27.1 (2018)
Earthquake seismicity (IRIS data sources)
Prior published research and mapped
surface faults
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Structural configuration of Chi Chi
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Apparent dip of fault plane with estimated fault width
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Extract from Kao and Chen, 2000
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Structural exposure - Chi Chi (Tai

Fig. 7. Outcrop of a strike-slip transfer fault of the 1999 Chi-Chi surface ruptures in Ta-Li chi, near Taiping (location see Fig. 5). Schmidt’s projection,
lower hemisphere. Bedding planes shown as dashed-line greal circles. Faull planes shown as thin greal circles, with slickenside lineations as dois wilth
arrows indicating the sense of motion (inward direction for reverse slip). Computed stress axes shown as stars with five branches (o), four branches (o),
and three branches (g4). Method of calculation of stress tensor: Angelier (1984). Two-fault system has been observed: the major fault (strike N125°E, dip
707 to NE) is represented by an oblique reverse fault with an important lefi-lateral strike-slip component, and the minor one (strike NOE, dip 70° to E) is
a reverse fanlt. Oblique fault striations associated with the 1999 earthquake can be clearly observed on the major fault planc.

Extract from Lee and Chan, 2007
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The seismicity record

A video follows of the seismicity record (1998-2016) for shallow events (<33km), source:
IRIS data sources

Basemap: Sandwell et al, 2014 v27.1 (2018)

Annotated with Kao and Chen (2000) faults (red — active Chelungpa/black), present
day crustal structure (Subterrane (2019) white faults)

Focal mechanism solutions published for Chi Chi and Chengkung (various)
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1996 topography, 2000 topography

1996: GTOPO30, developed over a
three year period through a
collaborative effort led by staff at
the U.S. Geological Survey's Center
for Earth Resources Observation and
Science (EROS).

Eurasian Plate

L o 2000: Shuttle Radar Topography
£Tn / £ . Mission
® 49 - 6 ~ :
- C 49 / ¥ | Chi Chi seismicity (1999, <33 km
¢ ‘ A depth to hypocentre): IRIS data

sources

.. Phillipine
| Plate
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Conclusions

Qualitative interpretation is an important constraint to 4D modelling, whether time
lapse or future modelling

Seismic focal solutions constrain structural interpretation, but can be ambiguous
interpreted alone. A variety of important applications 1o infrastructure
development, civil engineering, land value, ultimately hazard mitigation

Date of data acquisition is a temporal sampling issue in 4D modelling. Making
so’rell|’rTesbrr|1§r)re cost efficient with longer missions, and enhanced measurement
repeatability.

When an interpretation correlates very well with all other measurements and
analysis, this provides a good basis for constrained 4D subsurface modelling of
ductile geological processes
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