

# Technical Report: Fault Connectivity Analysis & Earthquake Forecasting

October 30th, 2025

## **Executive Summary**

This report documents the development of Subterrane's Causality Lens $^{\text{TM}}$  technology, building upon foundational research from Subterrane's 2019 Taiwan analysis to identify hidden fault connectivity patterns that control major earthquake ruptures.

# 1. Academic & Proprietary Foundation

# 1.1 Subterrane Foundational Research (2019)

Key findings from Subterrane white paper "Revolution in earthquake studies and understanding of Earth's crustal structure" (2019):

- Regional Sinistral Fault System: Identification of a broad crustal fault system controlling Taiwan seismicity, with the Shuangtung thrust as part of a regional sinistral sense fault system
- **Structural Controls**: Documentation that offsets in the Pakuashan, Chelungpu and Shuangtung faults along their fault traces are clearly controlled by sinistral movement along north-striking faults
- Crustal Architecture: Mapping of major northeast-striking sinistral fault defining the boundary between Slate belt and Central Range, along which the Chi-Chi earthquake emanated
- Multi-disciplinary Approach: Integration of seismic tomography, earthquake seismicity, geological outcrop, and gravity/magnetic data

#### 1.2 Post-1999 Academic Validation

Field Evidence (Central Geological Survey, 1999; Chen et al., 2001):

- Surface rupture extended approximately 100 km, crossing mapped segment boundaries
- Continuous deformation pattern across previously identified structural gaps

Structural Analysis (Kao and Chen, 2000):

- Reactivated thrust front on Shuangtung fault system
- Out-of-sequence thrust faulting behavior in Taiwan

# 2. Subterrane Innovation: Causality Lens™ Technology

# 2.1 Building on 2019 Research

The Causality Lens™ implements and extends the 2019 Subterrane methodology through:

- **Geometric Connectivity Assessment**: Automated analysis of fault endpoint proximity and alignment
- **Kinematic Compatibility Analysis**: Evaluation of slip sense consistency across fault systems
- **Stress Transfer Modeling**: Computational simulation of stress interactions between faults
- Hidden Connectivity Probability: Statistical assessment of subsurface linkage potential

### 2.2 Technical Advancements Beyond 2019 Work

#### A. Automated Multi-scale Detection

- 2019 Method: Manual interpretation of gravity, magnetic, and seismic data
- Causality Lens™: Automated computational analysis of fault connectivity patterns

### B. Real-time Cascade Modeling

Building on Subterrane's 2019 structural insights, the system incorporates:

- Regional fabric alignment with the identified sinistral fault system
- Philippine Sea Plate interaction modeling
- Dynamic stress coupling calculations

#### C. Quantitative Magnitude Forecasting

- 2019 Insight: Identification of broad crustal fault system controlling seismic activity distribution
- Causality Lens™: Quantitative magnitude estimation based on connected fault system dimensions

### 3. Application to Taiwan Seismic Forecasting

### 3.1 Validating Against Chi-Chi Earthquake

Using Causality Lens™ analysis informed by Subterrane 2019 research, the system retrospectively identifies:

- The pre-earthquake structural setting at the junction of NNW and NNE trending faults
- The multi-fault rupture potential consistent with the 2019 mapped fault system
- High cascade probability based on structural connectivity patterns

### 3.2 50-Year Forecast Enhancement

The Causality Lens™ extends Subterrane's 2019 work by providing:

• **Dynamic Stress Evolution**: Time-dependent modeling of stress accumulation and transfer

- Probabilistic Cascade Forecasting: Quantitative assessment of multi-fault rupture likelihood
- Real-time Risk Assessment: Continuous updating of seismic hazard based on fault interactions

#### 4. References

## 4.1 Subterrane Proprietary Research

1. **Subterrane (2019)**: "Revolution in earthquake studies and understanding of Earth's crustal structure" - White paper documenting Taiwan fault system analysis

#### 4.2 Academic Literature

- 2. **Kao, H. and Chen, W-P. (2000)**: "The Chi-Chi Earthquake Sequence: Active, Out-of-Sequence Thrust Faulting in Taiwan" *Science*
- 3. **Chen, Y. G., et al. (2001)**: "Surface rupture of 1999 Chi-Chi earthquake yields insights on active tectonics of central Taiwan" *Bulletin of the Seismological Society of America*
- 4. **Wang, J. et al. (2010)**: "Seismicity gap and seismic quiescence before 1999 Chi-Chi earthquake" *Earthquake Science*

# 5. Conclusion

The Subterrane Causality Lens™ represents the computational implementation and advancement of the structural insights first identified in Subterrane's 2019 Taiwan research. By systematizing the methodology of integrating multi-disciplinary geophysical data and automating the detection of hidden fault connectivity, the technology enables proactive identification of multi-fault rupture scenarios before they occur.

This sovereign solution provides nations with advanced capability that builds directly upon Subterrane's foundational research, transforming structural insights into actionable seismic forecasts for disaster risk reduction and infrastructure resilience planning.